EULAR points to consider in the development of classification and diagnostic criteria in systemic vasculitis Neil Basu, ¹ Richard Watts, ² Ingeborg Bajema, ³ Bo Baslund, ⁴ Thorsten Bley, ⁵ Maarten Boers, ⁶ Paul Brogan, ⁷ Len Calabrese, ⁸ Maria C Cid, ⁹ Jan Willem Cohen-Tervaert, ¹⁰ Luis Felipe Flores-Suarez, ¹¹ Shouichi Fujimoto, ¹² Kirsten de Groot, ¹³ Loic Guillevin, ¹⁴ Gulen Hatemi, ¹⁵ Thomas Hauser, ¹⁶ David Jayne, ¹⁷ Charles Jennette, ¹⁸ Cees G M Kallenberg, ¹⁹ Shigeto Kobayashi, ²⁰ Mark A Little, ²¹ Alfred Mahr, ¹⁴ John McLaren, ²² Peter A Merkel, ²³ Seza Ozen, ²⁴ Xavier Puechal, ²⁵ Niels Rasmussen, ⁴ Alan Salama, ²⁶ Carlo Salvarani, ²⁷ Caroline Savage, ²¹ David G I Scott, ²⁸ Mårten Segelmark, ²⁹ Ulrich Specks, ³⁰ Cord Sunderköetter, ³¹ Kazuo Suzuki, ³² Vladimir Tesar, ³³ Allan Wiik, ³⁴ Hasan Yazici, ¹⁵ Raashid Lugmani³⁵ For numbered affiliations see end of article #### Correspondence to Raashid Luqmani, Nuffield Orthopaedic Centre, University of Oxford, Windmill Road, Oxford OX3 7LD, UK; raashid.luqmani@noc.anglox. nhs.uk Accepted 24 January 2010 #### **ABSTRACT** **Objectives** The systemic vasculitides are multiorgan diseases where early diagnosis and treatment can significantly improve outcomes. Robust nomenclature reduces diagnostic delay. However, key aspects of current nomenclature are widely perceived to be out of date, these include disease definitions, classification and diagnostic criteria. Therefore, the aim of the present work was to identify deficiencies and provide contemporary points to consider for the development of future definitions and criteria in systemic vasculitis. **Methods** The expert panel identified areas of concern within existing definitions/criteria. Consequently, a systematic literature review was undertaken looking to address these deficiencies and produce 'points to consider' in accordance with standardised European League Against Rheumatism (EULAR) operating procedures. In the absence of evidence, expert consensus was used. Results There was unanimous consensus for re-evaluating existing definitions and developing new criteria. A total of 17 points to consider were proposed, covering 6 main areas: biopsy, laboratory testing, diagnostic radiology, nosology, definitions and research agenda. Suggestions to improve and expand current definitions were described including the incorporation of anti-neutrophil cytoplasm antibody and aetiological factors, where known. The importance of biopsy in diagnosis and exclusion of mimics was highlighted, while equally emphasising its problems. Thus, the role of alternative diagnostic tools such as MRI, ultrasound and surrogate markers were also discussed. Finally, structures to develop future criteria were considered. **Conclusions** Limitations in current classification criteria and definitions for vasculitis have been identified and suggestions provided for improvement. Additionally it is proposed that, in combination with the updated evidence, these should form the basis of future attempts to develop and validate revised criteria and definitions of vasculitis. #### INTRODUCTION The primary systemic vasculitides are a group of uncommon diseases (combined annual incidence >100 new cases per million), some of which are associated with an untreated 1-year mortality of >80%. Early diagnosis and treatment significantly improves outcome. Unfortunately, however, their relative rarity and heterogeneity frequently leads to diagnostic delay, which could be improved by better nomenclature. The terms 'disease definition', 'classification' and 'diagnostic criteria' are essential components of the nomenclature of any disease. However, they are frequently and incorrectly used interchangeably. For example the American College of Rheumatology (ACR) classification criteria for rheumatoid arthritis (RA) are unhelpful in diagnosing early RA.4 In the vasculitides, each condition should be described (ie, disease definition), criteria listed to allow distinction from the general population and from similar, non-vasculitic 'mimic' conditions (ie, diagnostic criteria) and further criteria are required to distinguish one form of vasculitis from another (ie, classification criteria). The primary purpose of diagnostic criteria is to diagnose the conditions of individual patients, but they can also be used to distinguish one type of vasculitis from another. Classification criteria are primarily intended to generate homogeneous (usually 'classic') sets of patients for research.⁵ In the absence of validated diagnostic criteria for systemic vasculitis, the ACR classification criteria⁵ and the Chapel Hill Consensus Conference (CHCC)⁶ definitions are often used as substitutes. The ACR classification criteria for vasculitis have sensitivities of 71.0% to 95.3% and specificities between 78.7 and 99.7%. The most sensitive and specific criteria were for Churg–Strauss syndrome (CSS), giant cell arteritis (GCA) and Takayasu disease (TAK); hypersensitivity vasculitis (HV) was the least well defined condition (sensitivity 71.0%, specificity 83.9%). The ACR criteria have facilitated epidemiological and clinical studies. However, they have three main disadvantages: The failure to include microscopic polyangiitis (MPA), which was not commonly used during the 1980s, despite its description in 1948.⁸ - (2) The lack of application of anti-neutrophil cytoplasm antibody (ANCA) as a criterion in the diagnosis of Wegener's granulomatosis (WG),⁹⁻¹¹ MPA,¹⁰ and CSS¹² (and also in polyarteritis nodosa (PAN), because of its absence).¹³ - (3) Use of the initial diagnosis made by the participating doctor as the gold standard. The ACR criteria were derived by determining which features distinguished one form of vasculitis from another. Unsurprisingly, the ACR criteria demonstrate poor reliability when applied as diagnostic criteria, ¹⁴ as they were not designed for this purpose. The CHCC definitions for primary vasculitis, 6 including MPA, describe features that should be present in a patient to warrant using a given term for either classification or diagnosis, but they do not specify what observations or criteria should be used to definitively determine that a given patients has a specific form of vasculitis. Attempts to validate CHCC definitions as diagnostic criteria (by including surrogate markers such as ANCA) have been unsuccessful. ¹⁵ ¹⁶ There is widespread controversy in relation to the use of ACR criteria and CHCC definitions. A recent survey of an international panel of experts reflects this (Table 1). The majority felt the ACR criteria for PAN, CSS, Henoch–Schönlein purpura (HSP) and HV and CHCC definitions for WG, MPA and PAN were no longer fit for purpose. Paediatricians have already developed a set of classification criteria addressing new developments based on their experience in childhood.¹⁷ The European League Against Rheumatism (EULAR) convened an expert consensus group to consider re-evaluating definitions, classification and diagnostic criteria in systemic vasculitis, in order to highlight areas which require updating or are of concern and indicate what should be considered next. #### **METHODS** #### Working group A consensus group was formed comprising 39 experts in vasculitis. In order to encourage universal acceptance of the conclusions, we incorporated multiple disciplines and nationalities: rheumatology (15), nephrology (7), immunology (5), internal medicine (3), pathology (2), paediatrics (2), otolaryngology (1), pulmonology (1), dermatology (1), radiology (1) and clinical epidemiology (1) were represented from 10 European countries, USA, Mexico and Japan. Table 1 Percentage of committee dissatisfied with disease criteria/ definition (22 participants) | Disease | ACR (%) | CHCC (%) | |---------|----------------|----------------| | GCA | 38 | 27 | | TAK | 45 | 27 | | PAN | 76 | 59 | | KD | Not applicable | 14 | | WG | 43 | 68 | | MPA | Not applicable | 59 | | CSS | 76 | 36 | | HSP | 86 | 14 | | HV | 75 | Not applicable | | LV | Not applicable | 41 | | Cryo | Not applicable | 36 | | | | | ACR, American College of Rheumatology; CHCC, Chapel Hill Consensus Conference; Cryo, cryoglobulinaemic vasculitis; CSS, Churg-Strauss syndrome; GCA, giant cell arteritis; HSP, Henoch-Schönlein purpura; HV, hypersensitivity vasculitis; KD, Kawasaki disease; LV, leucocytoclastic vasculitis; MPA, microscopic polyangiitis; PAN, polyarteritis nodosa; TAK, Takayasu disease; WG, Wegener's granulomatosis. The project conformed to the EULAR standing committees published standard procedures for the elaboration of recommendations. Since the groups' findings were based on a systematic literature review rather than a data-driven approach, it is appropriate to use the term 'points to consider' rather than 'guidelines' or 'recommendations'. #### **Expert opinion** We used an iterative process to establish the major areas of concern/difficulties with the existing definitions/criteria. This involved a questionnaire to committee members who were asked to identify the key questions and issues relating to the current definitions, classification and diagnostic criteria, followed by a modified Delphi process. As a result, a set of questions was produced that provided the basis for a systematic literature search exploring studies on the diagnosis and classification of systemic vasculitis. These were used to fuel discussion and delineate points to consider as we develop and test new/updated definitions and criteria in the future. #### Literature review We used the PubMed Medical Subject Headings (MeSH) database and Cochrane library. Where MeSH terms were unavailable (eg, MPA), free text was used. Searches were not limited by time or language; reference lists were manually searched. We excluded studies without abstracts; those with cohorts of less than 10 patients; case reports; reviews and letters. We examined relevant studies of all forms of systemic vasculitis including paediatric and secondary forms.
Antiglomerular basement membrane (anti-GBM) disease was also explored since it is closely related to the vasculitides. Search strings were derived by consensus, for example to examine the role of ANCA in diagnosis, the following string was employed: ('vasculitis' (MeSH) or 'anti-GBM disease' (MeSH) or 'erythema induratum' (MeSH) or 'MPA' or 'cryo' or 'rheumatoid vasculitis' or 'nodular vasculitis' or 'infection associated vasculitis' or 'ANCA associated vasculitis' or 'immune complex vasculitis' or 'renal vasculitis' or 'drug induced vasculitis') and 'antibodies, antineutrophil cytoplasmic' (MeSH) and 'diagnosis' (MeSH). We included all papers with an outcome identified in the Delphi exercise. Evidence was categorised according to the EULAR evidence hierarchy for diagnostic studies (Table 2). $^{19\,20}$ #### **RESULTS AND DISCUSSION** #### Questions raised by Delphi exercise A total of 10 questions were generated through the modified Delphi exercise (see Table 3). Some questions could only be addressed by supplementing published evidence with consensus. #### **Points for consideration** The results of the literature search were grouped into three main diagnostic topics (Table 4). The following discussion combines the results of the literature search and expert opinion and attempts to cover the questions raised through the modified Delphi exercise. From the results, 17 'points to consider' were extrapolated (Table 5). #### **Diagnostic tools** #### Biopsy Histology is fundamental to the diagnosis of most forms of vasculitis and more importantly, perhaps, the exclusion of mimics. **Table 2** The European League Against Rheumatism (EULAR) evidence hierarchy for diagnosis based on study design | Grade | Evidence | |-------|--| | la | Meta-analysis of cohort studies | | lb | Meta-analysis of case control studies | | lla | Cohort studies | | llb | Case control/cross-sectional comparative studies | | III | Non-comparative descriptive studies | | IV | Expert opinion | **Table 3** Questions generated by the Delphi exercise | No. | Question | |-----|--| | 1 | Which diseases should be included in future classification/diagnostic criteria? | | 2 | Should there be upper or lower age limits for certain vasculitides? | | 3 | What methodologies should be used to create classification/diagnostic criteria? | | 4 | What is the role of biopsy findings in diagnosis? | | 5 | What is the role of ANCA in diagnosis? | | 6 | What is the importance of vessel size and vessel type when considering criteria? | | 7 | What is the role of radiographic imaging in diagnosis? | | 8 | What is the role of surrogate markers in diagnosis? | | 9 | Should we identify and exclude 'mimics' prior to making the diagnosis of vasculitis? | | 10 | Shall we cease to use eponyms as primary names for the vasculitides? | ANCA, anti-neutrophil cytoplasm antibody. Table 4 Number of citations identified versus number found suitable for evaluation | Topic | Identified citations | Selected citations | |----------------------|----------------------|--------------------| | Tissue pathology | 2724 | 64 | | Laboratory testing | 1063 | 68 | | Diagnostic radiology | 7138 | 46 | This is best highlighted by brain biopsy in central nervous system (CNS) vasculitis, where despite the potential for significant iatrogenic morbidity and variable yield (36% to 83%), $^{21\ 22}$ it remains the gold standard investigation due to its role in identifying alternative diagnoses such as infection. Significant variation exists in the utility of biopsy depending on the target organ. For example, the yield of kidney and temporal artery biopsies is high (80% $^{23\ 24}$ and 87% 25 respectively). In contrast, ear, nose and throat (ENT) and transbronchial biopsies have a low reported sensitivity (0% to 42%). $^{23\ 26-30}$ Clinically directed biopsies can improve yield as exemplified in the nerve, $^{31\,32}$ lung 23 and temporal artery. Further studies examining temporal artery sampling support the need for a prompt biopsy to reduce unnecessary corticosteroid exposure $^{33-36}$; adequate sampling by length (0.5–2 cm) $^{33\,37\,38}$ with multiple sectioning 39 and bilateral biopsies, 25 in view of the problem of skip lesions. It would be difficult to justify the latter routinely. A more effective approach may be sequential sampling of cases where the first biopsy is negative, in patients with a high pretest probability of GCA. 40 Although previous proposed criteria and definitions have incorporated histology, there are no universally recognised histological criteria and little evidence to justify the inclusion of specific pathological features. Perhaps the exception is IgA as an essential criterion in the diagnosis of HSP. In a study of 182 cases of skin vasculitis, the presence of IgA was 98% sensitive for the clinical diagnosis of HSP; however, the specificity was very low $(24\%)^{41}$ #### Laboratory testing The discovery of specific autoantibodies characterised by immunofluorescence patterns, cytoplasmic ANCA (cANCA) and perinuclear ANCA (pANCA) and subsequently by the relevant target antigens, proteinase 3 (PR3-ANCA) and myeloperoxidase (MPO-ANCA), has been a major advance in the diagnosis of small vessel vasculitis, 42 particularly WG and MPA. Sensitivity of ANCA varies significantly (34% to 92%)¹⁰ 11 43-47 due to non-standardised assays, 11 48 different study designs, 14 44 differences in treatment, disease activity and disease type in the populations studied. MPO-pANCA predominates in MPA and PR3-cANCA in WG, however, this is not absolute. Geographical variation has been observed with the presence of MPO-pANCA in 60% of a cohort of Chinese patients with WG.49 In contrast, specificity is consistent between studies. 10 43 45 Most studies include disease controls, predominantly containing patients with inflammatory bowel disease, systemic lupus erythematosus (SLE) and RA, rather than healthy controls. However, the ideal control group should include vasculitis mimics. 10 42 The combined use of indirect immunofluorescence and ELISA provides optimal performance. ^{11 10 50 51} A meta-analysis of seven studies provided a weighted pooled sensitivity of 85.5% and specificity of 98.6% for MPO-pANCA and PR3-cANCA in the diagnosis of WG, MPA or renal limited vasculitis. ⁴³ PR3-ANCA and MPO-ANCA are the only ANCA specificities with proven diagnostic value for small vessel vasculitis. However, additional ANCA specificities may emerge as useful diagnostic markers in future. ⁵² The prevalence of ANCA in CSS is lower than in WG or MPA (38% to 73%). ANCA-positive CSS is associated with a higher frequency of glomerulonephritis.¹² In some vasculitides, the absence of ANCA can be of value. For example, in PAN, which, historically, has been difficult to differentiate from MPA. $^{13\ 53-55}$ ANCA are only present in low titre or completely absent in all other vasculitides such as GCA⁵⁶ and Kawasaki disease (KD).⁵⁷ ANCA are not 100% specific for vasculitis; they are found in other autoimmune diseases and vasculitis mimics such as SLE,⁵⁸ RA,⁵⁹ HIV,⁶⁰ tuberculosis,⁶¹ 62 inflammatory bowel disease,⁶³ primary sclerosing cholangitis,⁶⁴ drug reactions (eg, cocaine⁶⁵ and propylthyourracil⁶⁶), infective endocarditis and septic shock.⁶⁷ Thus ANCA analysis should not be abused for general screening purposes. Selectivity of test ordering improves positive predictive value 51 and the use of ANCA requesting guidelines to avoid indiscriminate use may be justified. 68 #### Diagnostic radiology Radiological diagnostics are of increasing use in the assessment of large vessel vasculitis. Traditionally, conventional contrast angiography has been an essential criterion in the diagnosis of TAK. ⁶⁹ ⁷⁰ More recently, the less invasive applications of CT angiography and magnetic resonance angiography (MRA) have produced similar diagnostic performance (sensitivities of 95% ⁷¹ and 100% ⁷² respectively and specificity of 100% ⁷¹ ⁷² for both, where contrast angiography is the reference standard). They provide the added advantage of visualising mural changes, although, overall the performance of angiographic techniques in early disease is poor. In contrast MRI and ultrasound (US) both detected mural inflammation, ^{73–75} which may be useful in early diagnosis, but are inferior to angiography in late Table 5 Points to consider in the development of classification criteria and definitions in the systemic vasculitides | Statement | Level of evidence | | |--|-------------------|--| | Biopsy: | | | | 1. Although histology is fundamental to the diagnosis of vasculitis and exclusion of its' mimics, biopsy of affected organs is not always possible and yields vary significantly according to conditions and target organs | III | | | 2. TAB is an important tool in the diagnosis of GCA | la | | | 3. Cases of HSP usually have IgA deposits present on biopsy | | | | Laboratory testing: | | | | 4. ANCA testing plays an important diagnostic role in suspected small vessel vasculitis | la | | | 5. In suspected PAN, the absence of ANCA has diagnostic value | lla | | | 6. The role of clinical features and additional surrogate biomarkers for vasculitis is likely to have an important role in the development of future diagnostic | | | | criteria | | | | Diagnostic radiology: | | | | 7. CT and MRA techniques can replace standard angiography in the diagnosis of TAK | lla | | | 8. Ultrasound and high resolution MRI may have a role in the diagnosis of GCA | | | | 9. The role of abdominal angiography in the diagnosis of adult PAN is unclear | | | | 10. CT and MRI may be useful in
diagnosing ENT involvement associated with WG/CSS | III | | | 11. The role of radiology in the diagnosis of CNS vasculitis is unclear | III | | | Nosology: | | | | 12. The nomenclature in use for distinguishing between 'disease definitions', 'classification' and 'diagnostic' criteria is confusing and should be clarified wherever possible | IV | | | 13. Nosology of different forms of vasculitis should be a reflection of their aetiopathogenesis wherever this has been determined. In the absence of this, definition must rely on a clear accurate description of the salient features of the condition | IV | | | 14. The use of eponyms should be reviewed if a more rational approach to nomenclature can be developed, based on aetiopathogenesis, but their retention is necessary at present to avoid confusion | IV | | | Definitions: | | | | 15. Age is worthy of inclusion in the definitions of some forms of vasculitis, but its role should not be overstated | III | | | Research agenda: | | | | 16. Future criteria initiatives should include all forms of vasculitis, providing definitions of less common syndromes not covered by CHCC | IV | | | 17. The development of a classification tree will provide the foundations to future criteria | IV | | ANCA, anti-neutrophil cytoplasm antibody; CHCC, Chapel Hill Consensus Conference; CNS, central nervous system; ENT, ear, nose and throat; GCA, giant cell arteritis; HSP, Henoch—Schönlein purpura; MRA, magnetic resonance angiography; PAN, polyarteritis nodosa; TAB, temporal artery biopsy; TAK, Takayasu disease; US, ultrasound; WG/CSS, Wegener's granulomatosis/Churg—Strauss syndrome. disease. ⁷⁸⁷⁵⁷⁶ In future, early diagnosis of large vessel vasculitis may be facilitated by positron emission tomography scanning (PET) scanning. Retrospective studies suggesting sensitivities of 60% to 92% and specificities of 99% to 100% in the diagnosis of large vessel vasculitis, with greater sensitivity in detecting wall inflammation compared to MRI. ^{77–79} There is, however, insufficient evidence at present to advocate PET as a standard in diagnostics, especially in view of its considerable radiation dose when combined with CT. US and MRI, ^{80–82} but not PET⁸³, may be a useful alternative to temporal artery biopsy for the diagnosis of GCA. In a meta-analysis of 23 studies (2036 patients), the diagnostic value of US in GCA, using the 'halo' sign, a dark area around the temporal artery vessel, provided a weighted sensitivity and specificity of 69% and 82% respectively, compared to biopsy and 55% and 94% compared to ACR criteria. Abnormal findings appear to increase the likelihood of disease, thereby justifying a biopsy, while negative results decrease the post-test probability and reduce the need for a biopsy. ⁸⁴ The presence of bilateral halos may obviate the need of biopsy. ⁸⁰ Alternatively, 3T MRI of cranial arteries provides high diagnostic sensitivity (89% to 94%) and specificity (92% to 100%) in detecting vessel wall inflammation, although studies are based on small numbers performed at a limited number of centres. ⁸¹ 82 The available evidence to support other radiological strategies is not convincing. Abdominal angiographic abnormalities, particularly microaneurysms, are regarded as synonymous with PAN. However, studies assessing angiography in PAN have included a significant number of patients with MPA.^{85–87} Reported sensitivities are variable (58% to 89%) and one study described a specificity of 89% in populations with suspected medium vessel vasculitis. In practice, despite the absence of evidence, the risks of formal angiography encourage increased use of digital subtraction angiography and MRA as alternatives. In terms of granulomatous antibody-associated vasculitides, CT and MRI can be useful in diagnosing ENT disease. Compared to CT, sinus visualisation with MRI is sensitive (92%) in detecting inflammatory changes in WG.⁸⁸ In contrast, MRI is poor in delineation of destruction (5% of cases) compared to CT (40% of cases).⁸⁹ Although not diagnostic, they are necessary for guided biopsies that may lead to a diagnosis. The use of radiology in CNS vasculitis is controversial. The lack of a gold standard has caused difficulties in assessing its diagnostic performance in this rare and heterogeneous condition. Conventional angiography has low specificity (14% to 60%)^{21 90} and variable sensitivity (15% to 92%).⁹¹ Angiography alone is not pathognomonic and must be interpreted in the clinical context. Distinguishing reversible vasospasm is a particular problem. MRI, CT and MRA have a role, but no investigation provides diagnostic certainty. #### Surrogate markers It is clear that currently available diagnostic tools are imperfect, thus future criteria, at least in the short term, will rely heavily on clinical surrogate markers. The ACR classification criteria is dominated by clinical characteristics.⁵ Supplementing CHCC definitions with clinical features and biomarkers to form diagnostic criteria has not been effective in WG and MPA, however, alteration of the criteria improves their performance¹⁶ as classification criteria in WG (specifically by not excluding cases with hypereosinophilia) but not in MPA. The development of novel biomarkers may ultimately prove superior to biopsy, which provides suboptimal yield in practice. #### **Classification tree** We recommend the development of updated criteria and reevaluation of current disease definitions. A preliminary nomenclature scheme based upon a classification tree was agreed as work in progress and provides a basis for future validated classification and diagnostic criteria. The proposed scheme will accommodate the following features: - (a) The group raised concerns that 'inflammation of blood vessels', the true pathological definition, captured many diseases not considered to be clinical forms of vasculitis. Future criteria should focus only on clinically relevant vasculitis defined as a disease where pathological evidence of blood vessel inflammation is considered to be an important part of the disease. Thus, all forms of vascular disease will be defined as either 'vasculitis' or 'predominantly non-inflammatory vasculopathy'. The latter would include atherosclerosis, haemolytic uraemic syndrome and fibromuscular dysplasia. - (b) The use of eponyms should be reviewed. There is evidence linking Dr F Wegener with the Nazi regime, but how substantial this link is remains undetermined. Similar concerns have led to the removal of the term 'Reiter's syndrome' in favour of reactive arthritis. The committee has discussed this further with EULAR and ACR and have prepared a document raising the relevant issues which is currently being reviewed by the German society of rheumatology. We recognise that an alternative to the term for WG could be ANCA-associated vasculitis with granulomatosis (Wegener's granulomatosis). - In general, it was agreed that wide-scale abandonment of historically established terms would cause confusion and therefore any change would need to be introduced gradually, with initial retention of the old names in addition to the new, more appropriate names. - (c) The name for any disease should, where possible, reflect its pathophysiological basis. Our understanding of specific aetiologies in vasculitis is limited, but expanding. A significant proportion of patients with PAN and cryoglobulinaemic vasculitis (cryo) carry hepatitis B⁹⁴ and C⁹⁵ infections, respectively and there is evidence to suggest that these viruses induce direct vessel damage via immune complex formation. This should be reflected in their definitions and names. - (d) Age is worthy of inclusion in the definitions of some forms of vasculitis, but not all. - The spectrum of large vessel vasculitis has traditionally been set according to age⁵ with a cut-off of 50 years between GCA and TAK. The concept of 'age at disease onset' should be considered (as per the ACR criteria)⁵ since many patients with TAK present several years after their true disease onset with symptoms such as claudication. Age is currently used to define HSP, but at least 10% of cases occur in adulthood.⁵⁰ Adults with HSP often follow a distinct clinical course from children, in particular, with worse renal outcomes.⁹⁶ In contrast, KD is mainly a paediatric disease. Adult cases are rare and benign.⁹⁷ - (e) Vasculitis is divided into primary and secondary forms. Primary entities may move into the secondary category if aetiologies are discovered. Secondary vasculitis includes vasculitis due to infection, drugs, malignancy and connective tissue diseases. (f) The use of predominant vessel size and type will remain a major discriminator. In addition to 'small', 'medium' and 'large', a 'no predominant vessel size' category would be incorporated. This allows the inclusion of syndromes such as Behçets disease, CNS vasculitis, Cogan's syndrome and relapsing polychondritis. #### **Conclusions** There is currently no gold standard test for the diagnosis of vasculitis. We have critically appraised the value of biopsy, serology and radiology for diagnosing vasculitis to define an evidence base from which to modernise current definitions and criteria. We have identified areas of potential improvement in current definitions and criteria. The available evidence is insufficient to make definitive recommendations for diagnostic criteria. However, the points represent position statements to allow the development of future definitions and validated diagnostic/classification criteria. There is clear consensus among the international community to embrace this challenge. This work provides the foundation for a proposed large multicentre study to develop new criteria from prospective cohorts that would take current diagnostic testing into consideration. **Author affiliations** ¹University of Aberdeen, Aberdeen, UK ²University of East Anglia, School of Medicine, Norwich, Norfolk, UK ³Leiden University Medical Center, Leiden, The
Netherlands ⁴Rigshospitalet, Copenhagen, Denmark ⁵University Hospital Freiburg, Freiburg, Germany ⁶VU University Medical Center, Amsterdam, The Netherlands ⁷Institute of Child Health, London, UK ⁸Cleveland Clinic Foundation, Cleveland, Ohio, USA ⁹Hospital Clinic, University of Barcelona IDIBAPS, Barcelona, Spain ¹⁰Maastricht UMC, Maastricht, The Netherlands ¹¹National Institute of Respiratory Disease, Mexico City, Mexico ¹²Miyazaki University, Miyazaki, Japan ¹³Klinikum Offenbach, Offenbach, Germany ¹⁴University of Paris Descartes, Paris, France ¹⁵University of Istanbul, Istanbul, Turkey ¹⁶Immunologie-Zentrum Zürich, Zurich, Switzerland ¹⁷Addenbrooke's Hospital, Cambridge, UK ¹⁸University of North Carolina, Chapel Hill, North Carolina, USA ¹⁹University Hospital Groningen, Groningen, The Netherlands ²⁰Juntendo Koshigaya Hospital, Saitama, Japan ²¹Renal Institute of Birmingham, University of Birmingham, Birmingham, UK ²²Whytemans Brae Hospital, Kirkcaldy, Fife, UK ²³Boston University School of Medicine, Boston, Massachusetts, USA ²⁴Hacettepe University, Ankara, Turkey ²⁵Centre Hospitalier Le Mans, Le Mans, France ²⁶Imperial College London, London, UK ²⁷Arcispedale S Maria Nuova, Reggio Emilia, Italy ²⁸Norfolk and Norwich University Hospital Trust, Norwich, Norfolk, UK ²⁹Lund University, Lund, Sweden ³⁰Mayo Clinc, Minnesota, Minneapolis, USA 31 Universitätsklinikum Münster, Münich, Germany ³²Chiba University Graduate School of Medicine, Chiba, Japan ³³Charles University, Prague, Czech Republic 34Statens Serum Institut, Copenhagen, Denmark ³⁵University of Oxford, Oxford, UK Funding EULAR Executive Secretariat, Ministerio de Cienciae Innovación, SAF 08/04328 (MCC), and the American College of Rheumatology. Provenance and peer review Not commissioned; externally peer reviewed. Competing interest None. #### **REFERENCES** - Watts RA, Scott DGI. Epidemiology of vasculitis. In Ball GV, Bridges L Eds. Vasculitis. 2nd edition. Oxford University Press: Oxford, 2008:7–22. - Frohnert PP, Sheps SG. Long-term follow-up study of periarteritis nodosa. Am J Med 1967;43:8–14. - Adu D, Howie AJ, Scott DG, et al. Polyarteritis and the kidney. Q J Med 1987;62:221–37. - Harrison BJ, Symmons DP, Barrett EM, et al. The performance of the 1987 ARA classification criteria for rheumatoid arthritis in a population based cohort of patients - with early inflammatory polyarthritis. American Rheumatism Association. *J Rheumatol* 1998:**25**:2324–30 - Fries JF, Hunder GG, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of vasculitis. Summary. Arthritis Rheum 1990;33:1135–6. - Jennette JC, Falk RJ, Andrassy K, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum 1994;37:187–92. - Calabrese LH, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of hypersensitivity vasculitis. Arthritis Rheum 1990:33:1108–13. - Davson J, Ball J, Platt R. The kidney in periarteritis nodosa. Q J Med 1948:17:175–202. - Rao JK, Weinberger M, Oddone EZ, et al. The role of antineutrophil cytoplasmic antibody (c-ANCA) testing in the diagnosis of Wegener granulomatosis. A literature review and meta-analysis. Ann Intern Med 1995;123:925–32. - Hagen EC, Daha MR, Hermans J, et al. Diagnostic value of standardized assays for anti-neutrophil cytoplasmic antibodies in idiopathic systemic vasculitis. EC/BCR Project for ANCA Assay Standardization. Kidney Int 1998;53:743–53. - Csernok E, Ahlquist D, Ullrich S, et al. A critical evaluation of commercial immunoassays for antineutrophil cytoplasmic antibodies directed against proteinase 3 and myeloperoxidase in Wegener's granulomatosis and microscopic polyangiitis. Rheumatology (Oxford) 2002;41:1313–17. - Sinico RA, Di Toma L, Maggiore U, et al. Prevalence and clinical significance of antineutrophil cytoplasmic antibodies in Churg-Strauss syndrome. Arthritis Rheum 2005;52:2926–35. - Guillevin L, Lhote F, Amouroux J, et al. Antineutrophil cytoplasmic antibodies, abnormal angiograms and pathological findings in polyarteritis nodosa and Churg-Strauss syndrome: indications for the classification of vasculitides of the polyarteritis Nodosa Group. Br J Rheumatol 1996;35:958–64. - Rao JK, Allen NB, Feussner JR, et al. A prospective study of antineutrophil cytoplasmic antibody (c-ANCA) and clinical criteria in diagnosing Wegener's granulomatosis. Lancet 1995;346:926–31. - Lane SE, Watts RA, Barker TH, et al. Evaluation of the sorensen diagnostic criteria in the classification of systemic vasculitis. Rheumatology 2002;41:1138–41. - Sørensen SF, Slot O, Tvede N, et al. A prospective study of vasculitis patients collected in a five year period: evaluation of the Chapel Hill nomenclature. Ann Rheum Dis 2000:59:478–82. - Ozen S, Ruperto N, Dillon MJ, et al. EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann Rheum Dis 2006;65:936–41. - Dougados M, Betteridge N, Burmester GR, et al. EULAR standardised operating procedures for the elaboration, evaluation, dissemination, and implementation of recommendations endorsed by the EULAR standing committees. Ann Rheum Dis 2004;63:1172–6. - Zhang W, Doherty M, Pascual E, et al. EULAR evidence based recommendations for gout. Part I: Diagnosis. Report of a task force of the Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006;65:1301–11. - Zhang W, Doherty M, Leeb BF, et al. EULAR evidence-based recommendations for the diagnosis of hand osteoarthritis: report of a task force of ESCISIT. Ann Rheum Dis 2009;68:8–17. - Chu CT, Gray L, Goldstein LB, et al. Diagnosis of intracranial vasculitis: a multidisciplinary approach. J Neuropathol Exp Neurol 1998;57:30–8. - Alrawi A, Trobe JD, Blaivas M, et al. Brain biopsy in primary angiitis of the central nervous system. Neurology 1999;53:858–60. - Hoffman GS, Kerr GS, Leavitt RY, et al. Wegener granulomatosis: an analysis of 158 patients. Ann Intern Med 1992;116:488–98. - Hauer HA, Bajema IM, van Houwelingen HC, et al. Renal histology in ANCAassociated vasculitis: differences between diagnostic and serologic subgroups. Kidney Int 2002:61:80–9 - Niederkohr RD, Levin LA. Management of the patient with suspected temporal arteritis a decision-analytic approach. Ophthalmology 2005;112:744–56. - Jennings CR, Jones NS, Dugar J, et al. Wegener's granulomatosis--a review of diagnosis and treatment in 53 subjects. Rhinology 1998;36:188–91. - Del Buono EA, Flint A. Diagnostic usefulness of nasal biopsy in Wegener's granulomatosis. Hum Pathol 1991;22:107–10. - Devaney KO, Travis WD, Hoffman G, et al. Interpretation of head and neck biopsies in Wegener's granulomatosis. A pathologic study of 126 biopsies in 70 patients. Am J Surg Pathol 1990;14:555–64. - Murray A, McGarry GW. The clinical value of septal perforation biopsy. Clin Otolaryngol Allied Sci 2000;25:107–9. - Maguchi S, Fukuda S, Takizawa M. Histological findings in biopsies from patients with cytoplasmic-antineutrophil cytoplasmic antibody (cANCA)-positive Wegener's granulomatosis. *Auris Nasus Larynx* 2001;28 Suppl:S53–8. - Albert DA, Silverstein MD, Paunicka K, et al. The diagnosis of polyarteritis nodosa. II. Empirical verification of a decision analysis model. Arthritis Rheum 1988;31:1128–34. - Albert DA, Rimon D, Silverstein MD. The diagnosis of polyarteritis nodosa. I. A literature-based decision analysis approach. Arthritis Rheum 1988;31:1117–27. - Taylor-Gjevre R, Vo M, Shukla D, et al. Temporal artery biopsy for giant cell arteritis. J Rheumatol 2005;32:1279–82. - Allison MC, Gallagher PJ. Temporal artery biopsy and corticosteroid treatment. Ann Rheum Dis 1984;43:416–17. - Achkar AA, Lie JT, Hunder GG, et al. How does previous corticosteroid treatment affect the biopsy findings in giant cell (temporal) arteritis? Ann Intern Med 1994:120:987–92. - Ray-Chaudhuri N, Kiné DA, Tijani SO, et al. Effect of prior steroid treatment on temporal artery biopsy findings in giant cell arteritis. Br J Ophthalmol 2002;86:530–2. - Sharma NS, Ooi JL, McGarity BH, et al. The length of superficial temporal artery biopsies. ANZ J Surg 2007;77:437–9. - Mahr A, Saba M, Kambouchner M, et al. Temporal artery biopsy for diagnosing giant cell arteritis: the longer, the better? Ann Rheum Dis 2006;65:826–8. - Chakrabarty A, Franks AJ. Temporal artery biopsy: is there any value in examining biopsies at multiple levels? J Clin Pathol 2000;53:131–6. - Hayreh SS, Podhajsky PA, Raman R, et al. Giant cell arteritis: validity and reliability of various diagnostic criteria. Am J Ophthalmol 1997;123:285–96. - Helander SD, De Castro FR, Gibson LE. Henoch-Schönlein purpura: clinicopathologic correlation of cutaneous vascular IgA deposits and the relationship to leukocytoclastic vasculitis. Acta Derm Venereol 1995;75:125–9. - van der Woude FJ, Rasmussen N, Lobatto S, et al. Autoantibodies against neutrophils and monocytes: tool for diagnosis and marker of disease activity in Wegener's granulomatosis. Lancet 1985;1:425–9. - Choi HK, Liu S, Merkel PA, et al. Diagnostic performance of antineutrophil cytoplasmic antibody tests for idiopathic vasculitides: metaanalysis with a focus on antimyeloperoxidase antibodies. J Rheumatol 2001;28:1584–90. - Fienberg R, Mark EJ, Goodman M, et al. Correlation of antineutrophil cytoplasmic antibodies with the extrarenal histopathology of Wegener's (pathergic) granulomatosis and related forms of vasculitis. Hum Pathol 1993;24:160–8. - Rao JK. The role of antineutrophil cytoplasmic antibody (c-ANCA) testing in the diagnosis of Wegener granulomatosis. A literature review and meta-analysis. Ann Intern Med 1995;123:925–32. - Harris A, Chang G, Vadas M, et al. ELISA is the superior method for detecting antineutrophil cytoplasmic antibodies in the diagnosis of systemic necrotising vasculitis. J Clin Pathol 1999:52:670–6. - Stone JH, Talor M, Stebbing J, et al. Test characteristics of
immunofluorescence and ELISA tests in 856 consecutive patients with possible ANCA-associated conditions. Arthritis Care Res 2000;13:424–34. - Pollock W, Dunster K, Rolland JM, et al. A comparison of commercial and in-house ELISAs for antineutrophil cytoplasmic antibodies directed against proteinase 3 and myeloperoxidase. Pathology 1999;31:38–43. - Chen M, Yu F, Zhang Y, et al. Characteristics of Chinese patients with Wegener's granulomatosis with anti-myeloperoxidase autoantibodies. Kidney Int 2005;68:2225–9. - Merkel PA, Polisson RP, Chang Y, et al. Prevalence of antineutrophil cytoplasmic antibodies in a large inception cohort of patients with connective tissue disease. Ann Intern Med 1997;126:866–73. - McLaren JS, Stimson RH, McRorie ER, et al. The diagnostic value of anti-neutrophil cytoplasmic antibody testing in a routine clinical setting. QJM 2001;94:615–21. - Kain R, Exner M, Brandes R, et al. Molecular mimicry in pauci-immune focal necrotizing glomerulonephritis. Nat Med 2008;14:1088–96. - Hauschild S, Schmitt WH, Csernok E, et al. ANCA in systemic vasculitides, collagen vascular diseases, rheumatic disorders and inflammatory bowel diseases. Adv Exp Med Biol 1993;336:245–51. - Guillevin L, Lhote F, Brauner M, et al. Antineutrophil cytoplasmic antibodies (ANCA) and abnormal angiograms in polyarteritis nodosa and Churg-Strauss syndrome: indications for the diagnosis of microscopic polyangiitis. Ann Med Interne (Paris) 1995:146:548–50. - Baranger TA, Audrain MA, Testa A, et al. Anti-neutrophil cytoplasm antibodies in patients with ACR criteria for polyarteritis nodosa: help for systemic vasculitis classification? Autoimmunity 1995;20:33–7. - Cats HA, Tervaert JW, van Wijk R, et al. Anti-neutrophil cytoplasmic antibodies in giant cell arteritis and polymyalgia rheumatica. Adv Exp Med Biol 1993;336:363–6. - Guzman J, Fung M, Petty RE. Diagnostic value of anti-neutrophil cytoplasmic and anti-endothelial cell antibodies in early Kawasaki disease. J Pediatr 1994;124:917–20. - Waldendorf M, Schneider M. Anti-neutrophil cytoplasmic antibodies in patients with systemic lupus erythematosus. Adv Exp Med Biol 1993;336:381–4. - Charles PJ, Maini RN. Antibodies to neutrophil cytoplasmic antigens in rheumatoid arthritis. Adv Exp Med Biol 1993;336:367–70. - Savige JA, Chang L, Crowe SM. Anti-neutrophil cytoplasm antibodies in HIV infection. Adv Exp Med Biol 1993;336:349–52. - Flores-Suárez LF, Cabiedes J, Villa AR, et al. Prevalence of antineutrophil cytoplasmic autoantibodies in patients with tuberculosis. Rheumatology (Oxford) 2003:42:223–9. - Pradhan VD, Badakere SS, Ghosh K, et al. Spectrum of anti-neutrophil cytoplasmic antibodies in patients with pulmonary tuberculosis overlaps with that of Wegener's granulomatosis. *Indian J Med Sci* 2004;58:283–8. - Mulder AH, Broekroelofs J, Horst G, et al. Anti-neutrophil cytoplasmic antibodies (ANCA) in inflammatory bowel disease: characterization and clinical correlates. Clin Exp Immunol 1994;95:490–7. - Halbwachs-Mecarelli L, Nusbaum P, Noël LH, et al. Antineutrophil cytoplasmic antibodies (ANCA) directed against cathepsin G in ulcerative colitis, Crohn's disease and primary sclerosing cholangitis. Clin Exp Immunol 1992;90:79–84. - Olaf W, Kimberly AR, Augustine SL, et al. Antineutrophil cytoplasmic antibodies reacting with human neutrophil elastase as a diagnostic marker for cocaineinduced midline destructive lesions but not autoimmune vasculitis. Arth Rheum 2004;50:2954–65. - Gunton JE, Stiel J, Clifton-Bligh P, et al. Prevalence of positive anti-neutrophil cytoplasmic antibody (ANCA) in patients receiving anti-thyroid medication. Eur J Endocrin 2000;142:587–90. - Mege JL, Escallier JC, Capo C, et al. Anti-neutrophil cytoplasmic antibodies (ANCA) and infection. Adv Exp Med Biol 1993;336:353–6. - Mandl LA, Solomon DH, Smith EL, et al. Using antineutrophil cytoplasmic antibody testing to diagnose vasculitis: can test-ordering guidelines improve diagnostic accuracy? Arch Intern Med 2002;162:1509–14. - Ishikawa K. Diagnostic approach and proposed criteria for the clinical diagnosis of Takayasu's arteriopathy. J Am Coll Cardiol 1988;12:964–72. - Sharma BK, Jain S, Suri S, et al. Diagnostic criteria for Takayasu arteritis. Int J Cardiol 1996;54 Suppl:S141–7. - Yamada I, Nakagawa T, Himeno Y, et al. Takayasu arteritis: evaluation of the thoracic aorta with CT angiography. Radiology 1998;209:103 –9. - Yamada I, Nakagawa T, Himeno Y, et al. Takayasu arteritis: diagnosis with breathhold contrast-enhanced three-dimensional MR angiography. J Magn Reson Imaging 2000:11:481–7 - Yamada I, Numano F, Suzuki S. Takayasu arteritis: evaluation with MR imaging Radiology 1993;188:89–94. - Maeda H, Handa N, Matsumoto M, et al. Carotid lesions detected by B-mode ultrasonography in Takayasu's arteritis: "macaroni sign" as an indicator of the disease. Ultrasound Med Biol 1991;17:695–701. - Choe YH, Kim DK, Koh EM, et al. Takayasu arteritis: diagnosis with MR imaging and MR angiography in acute and chronic active stages. J Magn Reson Imaging 1999;10:751–7. - Miller DL, Reinig JW, Volkman DJ. Vascular imaging with MRI: inadequacy in Takayasu's arteritis compared with angiography. AJR Am J Roentgenol 1986:146:949 –54 - Webb M, Chambers A, AL-Nahhas A, et al. The role of 18F-FDG PET in characterising disease activity in Takayasu arteritis. Eur J Nucl Med Mol Imaging 2004;31:627–34. - Walter MA, Melzer RA, Schindler C, et al. The value of (18F)FDG-PET in the diagnosis of large-vessel vasculitis and the assessment of activity and extent of disease. Eur J Nucl Med Mol Imaging 2005;32:674 –81. - Meller J, Strutz F, Siefker U, et al. Early diagnosis and follow-up of aortitis with ((18) F)FDG PET and MRI. Eur J Nucl Med Mol Imaging 2003;30:730–6. - Karahaliou M, Vaiopoulos G, Papaspyrou S, et al. Colour duplex sonography of temporal arteries before decision for biopsy: a prospective study in 55 patients with suspected giant cell arteritis. Arthritis Res Ther 2006;8:R116. - Bley TA, Weiben O, Uhl M, et al. Assessment of the cranial involvement pattern of giant cell arteritis with 3T magnetic resonance imaging. Arthritis Rheum 2005:52:2470–7. - Bley TA, Wieben O, Uhl M, et al. High-resolution MRI in giant cell arteritis: imaging of the wall of the superficial temporal artery. AJR Am J Roentgenol 2005:184:283–7. - Brodmann M, Lipp RW, Passath A, et al. The role of 2-18F-fluoro-2-deoxy-D-glucose positron emission tomography in the diagnosis of giant cell arteritis of the temporal arteries. Rheumatology (Oxford) 2004;43:241–2. - Karassa FB, Matsagas MI, Schmidt WA, et al. Meta-analysis: test performance of ultrasonography for giant-cell arteritis. Ann Intern Med 2005;142:359 –69. - Hekali P, Kajander H, Pajari R, et al. Diagnostic significance of angiographically observed visceral aneurysms with regard to polyarteritis nodosa. Acta Radiol 1991:32:143–8. - Lightfoot RW Jr, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of polyarteritis nodosa. Arthritis Rheum 1990;33:1088–93. - Travers RL, Allison DJ, Brettle RP, et al. Polyarteritis nodosa: a clinical and angiographic analysis of 17 cases. Semin Arthritis Rheum 1979;8:184–99. - Muhle C, Reinhold-Keller E, Richter C, et al. MRI of the nasal cavity, the paranasal sinuses and orbits in Wegener's granulomatosis. Eur Radiol 1997;7:566–70. - Simmons JT, Leavitt R, Kornblut AD, et al. CT of the paranasal sinuses and orbits in patients with Wegener's granulomatosis. Ear Nose Throat J 1987;66:134–40. - Kadkhodayan Y, Alreshaid A, Moran CJ, et al. Primary angiitis of the central nervous system at conventional angiography. Radiology 2004;233:878–82. - Salvarani C, Brown RD Jr, Calamia KT, et al. Angiography-negative primary central nervous system vasculitis: a syndrome involving small cerebral vessels. Medicine (Baltimore) 2008:87:264 –71. - Woywodt A, Haubitz M, Haller H, et al. Wegener's granulomatosis. Lancet 2006;367:1362–6. - Panush RS, Wallace DJ, Dorff RE, et al. Retraction of the suggestion to use the term "Reiter's syndrome" sixty-five years later: the legacy of Reiter, a war criminal, should not be eponymic honor but rather condemnation. Arthritis Rheum 2007:56:693 –4. - Guillevin L, Mahr A, Callard P, et al. Hepatitis B virus-associated polyarteritis nodosa: clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine (Baltimore) 2005;84:313–22. - Ferri C, Sebastiani M, Giuggioli D, et al. Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin Arthritis Rheum 2004;33:355–74. - García-Porrúa C, González-Gay MA. Comparative clinical and epidemiological study of hypersensitivity vasculitis versus Henoch-Schönlein purpura in adults. Semin Arthritis Rheum 1999:28:404–12. - Phillips WG, Marsden JR. Adult Kawasaki syndrome. Br J Dermatol 1993;129:330–3. ## EULAR points to consider in the development of classification and diagnostic criteria in systemic vasculitis Neil Basu, Richard Watts, Ingeborg Bajema, Bo Baslund, Thorsten Bley, Maarten Boers, Paul Brogan, Len Calabrese, Maria C Cid, Jan Willem Cohen-Tervaert, Luis Felipe Flores-Suarez, Shouichi Fujimoto, Kirsten de Groot, Loic Guillevin, Gulen Hatemi, Thomas Hauser, David Jayne, Charles Jennette, Cees G M Kallenberg, Shigeto Kobayashi, Mark A Little, Alfred Mahr, John McLaren, Peter A Merkel, Seza Ozen, Xavier Puechal, Niels Rasmussen, Alan Salama, Carlo Salvarani, Caroline Savage, David G I Scott, Mårten Segelmark, Ulrich Specks, Cord Sunderköetter, Kazuo Suzuki, Vladimir Tesar, Allan Wiik, Hasan Yazici and Raashid Lugmani Ann Rheum Dis published online May 6, 2010 Updated information and services can be found at: http://ard.bmj.com/content/early/2010/05/06/ard.2009.119032 These include: References This article cites 96 articles, 23 of which you can access for free at: http://ard.bmj.com/content/early/2010/05/06/ard.2009.119032#BIBL Email alerting service Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article. ### Topic Collections Articles on similar topics can be found in the following collections Vascularitis (285) Pathology (440) Clinical diagnostic tests (1270) Radiology (1104) Radiology (diagnostics) (743) Surgical diagnostic tests (429) #### **Notes** To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions To order reprints go to: http://journals.bmj.com/cgi/reprintform To subscribe to BMJ go to: http://group.bmj.com/subscribe/